Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Augmentative and alternative communication (AAC) devices enable speech-based communication, but generating speech is not the only resource needed to have a successful conversation. Being able to signal one wishes to take a turn by raising a hand or providing some other cue is critical in securing a turn to speak. Experienced conversation partners know how to recognize the nonverbal communication an augmented communicator (AC) displays, but these same nonverbal gestures can be hard to interpret by people who meet an AC for the first time. Prior work has identified motion through robots and expressive objects as a modality that can support communication. In this work, we work closely with an AAC user to understand how motion through a physical expressive object can support their communication. We present our process and resulting lessons on the designed object and the co-design process.more » « less
-
null (Ed.)Augmentative and alternative communication (AAC) devices enable speech-based communication. However, AAC devices do not support nonverbal communication, which allows people to take turns, regulate conversation dynamics, and express intentions. Nonverbal communication requires motion, which is often challenging for AAC users to produce due to motor constraints. In this work, we explore how socially assistive robots, framed as ''sidekicks,'' might provide augmented communicators (ACs) with a nonverbal channel of communication to support their conversational goals. We developed and conducted an accessible co-design workshop that involved two ACs, their caregivers, and three motion experts. We identified goals for conversational support, co-designed prototypes depicting possible sidekick forms, and enacted different sidekick motions and behaviors to achieve speakers' goals. We contribute guidelines for designing sidekicks that support ACs according to three key parameters: attention, precision, and timing. We show how these parameters manifest in appearance and behavior and how they can guide future designs for augmented nonverbal communication.more » « less
An official website of the United States government
